🌊 Deep Lake: Multi-Modal AI Database
Deep Lake is a database specifically designed for machine learning and AI applications, offering efficient data management, vector search capabilities, and seamless integration with popular ML frameworks.
Key Features
🔍 Vector Search & Semantic Operations
- High-performance similarity search for embeddings
- BM25-based semantic text search
- Support for building RAG applications
- Efficient indexing strategies for large-scale search
🚀 Optimized for Machine Learning
- Native integration with PyTorch and TensorFlow
- Efficient batch processing for training
- Built-in support for common ML data types (images, embeddings, tensors)
- Automatic data streaming with smart caching
☁️ Cloud-Native Architecture
- Native support for major cloud providers:
- Amazon S3
- Google Cloud Storage
- Azure Blob Storage
- Cost-efficient data management
- Data versioning and lineage tracking
Quick Installation
Basic Usage
import deeplake
# Create a dataset
ds = deeplake.create("s3://my-bucket/dataset") # or local path
# Add data columns
ds.add_column("images", deeplake.types.Image())
ds.add_column("embeddings", deeplake.types.Embedding(768))
ds.add_column("labels", deeplake.types.Text())
# Add data
ds.append({
"images": image_array,
"embeddings": embedding_vector,
"labels": "cat"
})
# Vector similarity search
results = ds.query("""
SELECT *
FROM dataset
ORDER BY COSINE_SIMILARITY(embeddings, ARRAY[...]) DESC
LIMIT 100
""")
Common Use Cases
Deep Learning Training
# PyTorch integration
from torch.utils.data import DataLoader
loader = DataLoader(ds.pytorch(), batch_size=32, shuffle=True)
for batch in loader:
images = batch["images"]
labels = batch["labels"]
# training code...
RAG Applications
# Store text and embeddings
ds.add_column("text", deeplake.types.Text(index_type=deeplake.types.BM25))
ds.add_column("embeddings", deeplake.types.Embedding(1536))
# Semantic search
results = ds.query("""
SELECT text
FROM dataset
ORDER BY BM25_SIMILARITY(text, 'machine learning') DESC
LIMIT 10
""")
Computer Vision
# Store images and annotations
ds.add_column("images", deeplake.types.Image(sample_compression="jpeg"))
ds.add_column("boxes", deeplake.types.BoundingBox())
ds.add_column("masks", deeplake.types.SegmentMask())
# Add data
ds.append({
"images": image,
"boxes": bounding_boxes,
"masks": segmentation_masks
})
Next Steps
- Check out our Quickstart Guide for detailed setup
- Explore RAG Applications
- See Deep Learning Integration
Resources
Why Deep Lake?
- Performance: Optimized for ML workloads with efficient data streaming
- Scalability: Handle billions of samples directly from the cloud
- Flexibility: Support for all major ML frameworks and cloud providers
- Cost-Efficiency: Smart storage management and compression
- Developer Experience: Simple, intuitive API with comprehensive features